This article may be reprinted free of charge provided 1) that there is clear attribution to the Orthomolecular Medicine News Service, and 2) that both the OMNS free subscription link http://orthomolecular.org/subscribe.html and also the OMNS archive link http://orthomolecular.org/resources/omns/index.shtml are included. |
|||||||||||||||||||||||||||
FOR IMMEDIATE RELEASE
It's Official: Vitamin D Reduces the Incidence of Autoimmunity
|
US RDA (2010) | Recommendation of 220 vitamin D experts [7] | Personal D3 supplementation of 193 vitamin D experts
[7] *excludes professor taking 200,000 IU/day for autoimmune disease |
|
0 - 12 months | 400 IU / day | 2000 - 4000 IU/day | Range = 0 - 50,000 IU/day 29 take ≥ 10,000 IU/day Average = 5,175 IU/day Median = 4000 IU/days Mode = 4000 IU/day |
1 - 70 years | 600 IU / day | ||
71+ years | 800 IU / day | ||
Pregnant or Breast Feeding |
600 IU / day | ||
People with kidney disease should monitor vitamin D levels closely | |||
Adjusting sunlight exposure, D3 intake, and co-factors to maintain vitamin D levels in the 40-60 ng/mL range is associated with lower risk of autoimmunity, respiratory disease, and other illnesses. Blood levels up to 100 ng/mL are generally safe with adequate vitamin K2. | |||
Daily intake necessary from all sources (sunlight, food, and/or supplementation) of vitamin D for 97.5% of people to reach: 20 ng/mL = 3,875 IU D3 (97 mcg); 30 ng/mL = 6200 D3 (155 mcg) [7] |
Duration - how long sufficient or therapeutic levels were maintained. Vitamin D has extensive epigenetic effects, impacting over 3,000 genes. It has been estimated that as much as 3-4% of the genome may be influenced by vitamin D. These genetic influences may be especially important during fetal development. [8] The half-life of the active form of vitamin D is about 4 hours, and the half-life of the pre-hormone form of vitamin D is 2-3 weeks. However, it may take even longer for the effects of proteins from genes upregulated and downregulated by vitamin D to make their biological impact. Bruce Ames' concept of "longevity proteins" applies. [9] With saturation of a full set of nutrients, cell metabolism is able to expand from production of only survival proteins to producing additional proteins he called "longevity proteins". For these reasons, it is important to maintain vitamin D in the healthy range on an ongoing basis rather than waiting until illness occurs. When rescue therapy is needed, calcifediol (25OHD) increases active vitamin D levels more rapidly than cholecalciferol (D3). [10-12] (see http://www.orthomolecular.org/resources/omns/v17n17.shtml and http://www.orthomolecular.org/resources/omns/v16n55.shtml for discussions of nutritional support in critical illness).
Dynamic interactions - were sufficient levels of synergistic cofactors maintained? Magnesium is necessary in eight steps of vitamin D metabolism. [13,14] Intracellular selenocysteine can also be a rate limiting factor in vitamin D production and function. Increasing glutathione and cysteine can increase production of vitamin D even without vitamin D intake or sunlight exposure. In turn, vitamin D increases production of several selenoproteins. [15-17] Vitamin C and zinc also assist actions of vitamin D, and it is important to balance vitamin D with vitamin K2 to ensure mobilized calcium gets where it is needed rather than being deposited in arteries. 100 mcg K2 for every 5000 IU D3 is a good ratio for wellness. [18,19]
In research, controls matter too. This same VITAL study also looked at the effects of supplementing 1000 mg/day of omega-3 vs. placebo. A 15% reduction in the incidence of autoimmune disease was seen compared to the control group. However, this did not reach statistical significance. Interestingly, olive oil, which is known to be anti-inflammatory and a source of vitamin K, was used as the placebo for comparison. It is possible that the choice of a non-inert placebo blunted the signal of true benefit from the omega-3 intervention.
The VITAL study adds important support on the benefits of vitamin D for the immune system. Vitamin D regulates calcium and phosphate homeostasis in the body. Calcium is important for much more than strong bones. [20-23] Mobilized ionized calcium is essential for muscle contractions, nerve impulses, cell signalling, blood clotting, immune function, and catalyzing hundreds of enzymatic reactions throughout the body. Nearly all cells in the body have vitamin D receptors (VDRs). Intestine, bone, kidney, parathyroid glands, and immune cells (T cells, B cells, Dendritic Cells, Macrophages) have high levels of VDRs. The CYP27B1 enzyme which produces the active form of vitamin D and the ligand for VDR is also widely expressed in many cells throughout the body. The liver and kidney produce much of the active vitamin D in the body, however activated immune cells will also produce 1,25(OD)2D when the 25OHD substrate is present for conversion into the active hormone. Parathyroid Hormone (PTH) regulates the production of the active form of vitamin D in non-immune cells. Active vitamin D production in immune cells is not influenced by PTH, but is instead regulated by cytokines and the availability of the prehormone 25OHD in the local cellular environment.
Vitamin D has important influences on many phases in the innate branch of the immune system (cellular, complement, antimicrobial peptides, lectins, non-antibody producing aspects of immunity), and also in the adaptive branch of the immune system (antibody-producing aspects of immunity). The adaptive branch of the immune system has two major phases. The effector phase involves antibody production while the regulatory phase involves removal of B cells producing antibodies that cross-react with self-cells. The antibody-antigen lock and key fit isn't always exact. Even healthy people have self-reactive B cell clones. [24] Similarity between a "foreign" antigen and a host cell membrane element may exist or an antibody may overlap the membrane portion of a neoantigen-membrane complex. When B cells with these self-reacting or self-cross-reacting antibodies are stimulated to mass divide and produce their antibodies, they must be destroyed by the regulatory immune cells (Tregs) to minimize self-injury. Imbalance or dysfunction in the regulatory phase of the adaptive immune response is the major mechanism of autoimmune diseases in humans. [25] Interestingly, several sensitive areas of the body, the brain, anterior chamber of the eyes, and testes, are devoid of adaptive immune responses. The risk of collateral damage from antibody production in these areas is too great.
The active form of vitamin D: [26,27]
The overall effect is a stronger innate immune response, and a safer adaptive immune response.
Vitamin D is important for a wide range of functions in human biology from conception onward. We now have more evidence pointing towards the importance of maintaining a vitamin D level in the 40-60 ng/mL range, along with maintaining adequate levels of synergistic nutrients to fight infections, sustain helpful immunity, and also to prevent harmful autoimmune reactions.
1. Hahn J, Cook NR, Alexander EK, et al. (2022) Vitamin D and marine omega 3 fatty acid supplementation and incident autoimmune disease: VITAL randomized controlled trial. BMJ 376:e066452. https://pubmed.ncbi.nlm.nih.gov/35082139
2. NIH Autoimmune Diseases Coordinating Committee: Autoimmune Diseases Research Plan, March 2005. https://www.niaid.nih.gov/sites/default/files/adccfinal.pdf
3. Heaney RP. (2014) Guidelines for optimizing design and analysis of clinical studies of nutrient effects. Nutr Rev 72:48-54. https://pubmed.ncbi.nlm.nih.gov/24330136
4. Smith RG. (2022) Vitamins and Minerals for Lowering Risk of Disease: Adding to the Evidence. Orthomolecular Medicine News Service. http://orthomolecular.org/resources/omns/v17n10.shtml
5. Cheng RZ. (2020) Covid-19 Highlights the Shortcomings of Evidence-based Medicine. J Orthomol Med. 35:1-7. https://isom.ca/article/covid-19-highlights-the-shortcomings-of-evidence-based-medicine
6. Williams RJ (1998) Biochemical Individuality. McGraw Hill; 1st edition (September 11, 1998) ISBN-13: 978-0879838935
7. Over 200 Scientists, Doctors, & Leading Authorities Call For Increased Vitamin D Use To Combat COVID-19 Scientific evidence indicates vitamin D reduces infections & deaths. Open Letter #VitaminDforAll, October 2020. https://vitamind4all.org/letter.html
8. Wagner CL and Hollis BW (2018) The Implications of Vitamin D Status During Pregnancy on Mother and her Developing Child. Front Endocrinol. 9:500. https://pubmed.ncbi.nlm.nih.gov/30233496
9. Ames BN (2018) Prolonging healthy aging: Longevity vitamins and proteins. Proc Nat Acad Sci USA 115:10835-10844. https://pubmed.ncbi.nlm.nih.gov/30322941
10. Bouillon R, Quesada-Gomez JM (2021) Vitamin D Endocrine System and COVID-19. JBMR Plus. 5:e10576. https://pubmed.ncbi.nlm.nih.gov/34950831
11. Entrenas Castillo M, Entrenas Costa LM, Vaquero Barrios JM, et al. (2020) Effect of calcifediol treatment and best available therapy versus best available therapy on intensive care unit admission and mortality among patients hospitalized for COVID-19: A pilot randomized clinical study. J Steroid Biochem Mol Biol. 203:105751. https://pubmed.ncbi.nlm.nih.gov/32871238
12. Nogues X, Ovejero D, Pineda-Moncusí M, et al. (2021) Calcifediol Treatment and COVID-19-Related Outcomes. J Clin Endocrinol Metab. 106:e4017-e4027. https://pubmed.ncbi.nlm.nih.gov/34097036
13. Dean C (2017) The Magnesium Miracle, 2nd Ed. Ballantine Books. ISBN-13 : 978-0399594441
14. Deng X, Song Y, Manson JE, et al. (2013) Magnesium, vitamin D status and mortality: results from US National Health and Nutrition Examination Survey (NHANES) 2001 to 2006 and NHANES III. BMC Med 11:187. https://pubmed.ncbi.nlm.nih.gov/23981518
15. Jain SK, Parsanathan R, Achari AE, et al. (2018) Glutathione Stimulates Vitamin D Regulatory and Glucose Metabolism Genes, Lowers Oxidative Stress and Inflammation, and Increases 25-Hydroxy-Vitamin D Levels in Blood: A Novel Approach to Treat 25-Hydroxyvitamin D Deficiency. Antioxid Redox Signal. 29:1792-1897. https://pubmed.ncbi.nlm.nih.gov/30160165
16. Alvarez JA, Chowdhury R, Jones DP, et al. (2014) Vitamin D status is independently associated with plasma glutathione and cysteine thiol/disulphide redox status in adults. Clin Endocrinol (Oxf) 81:458-466. https://pubmed.ncbi.nlm.nih.gov/24628365
17. Parsanathan R, Jain SK. (2019) Glutathione deficiency induces epigenetic alterations of vitamin D metabolism genes in the livers of high-fat diet-fed obese mice. Sci Rep. 9:14784. https://pubmed.ncbi.nlm.nih.gov/31616013
18. Flore R, Ponziani FR, Di Rienzo TA, et al. (2013) Something more to say about calcium homeostasis: the role of vitamin K2 in vascular calcification and osteoporosis. Eur Rev Med Pharmacol Sci. 17:2433-2440. https://pubmed.ncbi.nlm.nih.gov/24089220
19. Schwalfenberg GK. (2017) Vitamins K1 and K2: The Emerging Group of Vitamins Required for Human Health. J Nutr Metab. 2017:6254836. https://pubmed.ncbi.nlm.nih.gov/28698808
20. Bikle DD. (2016) Extraskeletal actions of vitamin D. Ann N Y Acad Sci. 1376:29-52. https://pubmed.ncbi.nlm.nih.gov/27649525
21. Aranow C (2011) Vitamin D and the Immune System. J Investig Med. 59:881-886. https://pubmed.ncbi.nlm.nih.gov/21527855
22. Fan YG, Pang ZQ, Wu TY, et al. (2020) Vitamin D deficiency exacerbates Alzheimer-like pathologies by reducing antioxidant capacity. Free Radic Biol Med. 161:139-149. https://pubmed.ncbi.nlm.nih.gov/33068737
23. Gönen MS, Alaylioglu M, Durcan E, et al. (2021) Rapid and Effective Vitamin D Supplementation May Present Better Clinical Outcomes in COVID-19 (SARS-CoV-2) Patients by Altering Serum INOS1, IL1B, IFNg, Cathelicidin-LL37, and ICAM1. Nutrients 13:4047. https://pubmed.ncbi.nlm.nih.gov/34836309
24. Male D, Brostoff J, Roth DB, Roitt I. (2006) Immunology. 7th ed. Philadelphia, PA: Mosby Elsevier.
25. Rosenblum MD, Remedios KA, Abbas AK (2015) Mechanisms of human autoimmunity. J Clin Invest. 125:2228-2233. https://pubmed.ncbi.nlm.nih.gov/25893595
26. Cantorna MT, Snyder L, Lin Y0D, Yang L. (2015) Vitamin D and 1,25(OH)2D Regulation of T-cells. Nutrients 7:3011-3021. https://pubmed.ncbi.nlm.nih.gov/25912039
27. Looman KIM, Jansen MAE, Voortman T, et al. (2017) The role of vitamin D on circulating memory T cells in children: The generation R Study. Pediatr Allergy Immunol. 28:579-587. https://pubmed.ncbi.nlm.nih.gov/28686349
28. The Nobel Prize in Physiology or Medicine 1903. NobelPrize.org. Nobel Media AB 2020. https://www.nobelprize.org/prizes/medicine/1903/summary
29. Williams C. (1849) On the use and administration of cod-liver oil in pulmonary consumption. London Journal of Medicine 1849, 1:1-18.[Google Scholar]
30. Wagner CL, Baggerly C, McDonnell S, et al. (2016) Post-hoc Analysis of Vitamin D Status and Reduced Risk of Preterm Birth in Two Vitamin D Pregnancy Cohorts Compared with South Carolina March of Dimes 2009-2011 rates. J Steroid Biochem Mol Biol. 155:245-251. https://pubmed.ncbi.nlm.nih.gov/26554936
31. McDonnell SL, Baggerly KA, Baggerly CA, et al. (2017) Maternal 25(OH)D concentrations >40 ng/mL associated with 60% lower preterm birth risk among general obstetricalpatients at an urban medical center. PLoS One 12: e0180483. https://pubmed.ncbi.nlm.nih.gov/28738090
32. McDonnell SL, Baggerly C, French CB, et al. (2016) Serum 25-Hydroxyvitamin D Concentrations >40 ng/mL Are Associated with >65% Lower Cancer Risk: Pooled Analysis of Randomized Trial and Prospective Cohort Study. PLoS One 11:e0152441. https://pubmed.ncbi.nlm.nih.gov/27049526
33. McDonnell SL, Baggerly CA, French CB, et al. (2018) Breast cancer risk markedly lower with serum 25- hydroxyvitamin D concentrations > 60 vs < 20 ng/mL (150 vs. 50 nmol/L); Pooled analysis of two randomized trials and a prospective cohort. PLoS One 13:e0199265. https://pubmed.ncbi.nlm.nih.gov/29906273
34. Manson JE, Cook NR, Manson I-ML, et al. (2019) Vitamin D Supplements and Prevention of Cancer and Cardiovascular Disease. N Engl J Med. 380:33-44. https://pubmed.ncbi.nlm.nih.gov/30415629
35. GrassRoots Health Nutrient Research Institute. Risk Reduction with Vitamin D and Omega-3: VITAL Trial Results (2018). https://www.grassrootshealth.net/document/risk-reduction-vitamin-d-omega-3-vital-trial-results-2018
36. Garland CF, Kim JJ, Mohr SB, et al. (2014) Meta-analysis of All-cause Mortality According to Serum 25-Hydroxyvitamin D. Am J Public Health. 104:e43-e50. https://pubmed.ncbi.nlm.nih.gov/24922127
37. Dror AA, Morozov N, Daoud A, et al. (2022) Pre-infection 25-hydroxyvitamin D3 levels and association with severity of COVID-19 illness. PLoS One 17:e0263069. https://pubmed.ncbi.nlm.nih.gov/35113901
38. Israel A, Cicurel A, Feldhamer I, et al. (2022) Vitamin D deficiency is associated with higher risks for SARS-CoV-2 infection and COVID-19 severity: a retrospective case-control study. Intern Emerg Med. 2022 Jan 9; 1-11. https://pubmed.ncbi.nlm.nih.gov/35000118
39. Heller RA, Sun Q, Hackler J et al. (2021) Prediction of survival odds in COVID-19 by zinc, age, and selenoprotein P as composite biomarker. Redox Biology 38:101764. https://pubmed.ncbi.nlm.nih.gov/33126054
40. Moghaddam A, Heller RA, Sun Q, et al. (2020) Selenium deficiency is associated with mortality risk from COVID-19. Nutrients 12:2098. https://pubmed.ncbi.nlm.nih.gov/32708526
41. Zhang J, Taylor EW, Bennett K, et al. (2020) Association between regional selenium status and reported outcome of COVID-19 cases in China. Am J Clin Nutr. 111:1297-1299. https://pubmed.ncbi.nlm.nih.gov/32342979
42. Leal-Martínez F, Abarca-Bernal L, García-Pírez A, et al. (2022) Effect of a Nutritional Support System to Increase Survival and Reduce Mortality in Patients with COVID-19 in Stage III and Comorbidities: A Blinded Randomized Controlled Clinical Trial. Int J Environ Res Public Health 19:1172. https://doi.org/10.3390/ijerph19031172
Orthomolecular medicine uses safe, effective nutritional therapy to fight illness. For more information: http://www.orthomolecular.org
To locate an orthomolecular physician near you: http://orthomolecular.org/resources/omns/v06n09.shtml
The peer-reviewed Orthomolecular Medicine News Service is a non-profit and non-commercial informational resource.
Albert G. B. Amoa, MB.Ch.B, Ph.D. (Ghana)
Seth Ayettey, M.B., Ch.B., Ph.D. (Ghana)
Ilyès Baghli, M.D. (Algeria)
Ian Brighthope, MBBS, FACNEM (Australia)
Gilbert Henri Crussol, D.M.D. (Spain)
Carolyn Dean, M.D., N.D. (USA)
Ian Dettman, Ph.D. (Australia)
Susan R. Downs, M.D., M.P.H. (USA)
Ron Ehrlich, B.D.S. (Australia)
Hugo Galindo, M.D. (Colombia)
Martin P. Gallagher, M.D., D.C. (USA)
Michael J. Gonzalez, N.M.D., D.Sc., Ph.D. (Puerto Rico)
William B. Grant, Ph.D. (USA)
Claus Hancke, MD, FACAM (Denmark)
Tonya S. Heyman, M.D. (USA)
Patrick Holford, BSc (United Kingdom)
Suzanne Humphries, M.D. (USA)
Ron Hunninghake, M.D. (USA)
Bo H. Jonsson, M.D., Ph.D. (Sweden)
Dwight Kalita, Ph.D. (USA)
Felix I. D. Konotey-Ahulu, MD, FRCP, DTMH (Ghana)
Jeffrey J. Kotulski, D.O. (USA)
Peter H. Lauda, M.D. (Austria)
Alan Lien, Ph.D. (Taiwan)
Homer Lim, M.D. (Philippines)
Stuart Lindsey, Pharm.D. (USA)
Pedro Gonzalez Lombana, MD, MsC, PhD (Colombia)
Victor A. Marcial-Vega, M.D. (Puerto Rico)
Mignonne Mary, M.D. (USA)
Jun Matsuyama, M.D., Ph.D. (Japan)
Joseph Mercola, D.O. (USA)
Jorge R. Miranda-Massari, Pharm.D. (Puerto Rico)
Karin Munsterhjelm-Ahumada, M.D. (Finland)
Tahar Naili, M.D. (Algeria)
W. Todd Penberthy, Ph.D. (USA)
Zhiyong Peng, M.D. (China)
Isabella Akyinbah Quakyi, Ph.D. (Ghana)
Selvam Rengasamy, MBBS, FRCOG (Malaysia)
Jeffrey A. Ruterbusch, D.O. (USA)
Gert E. Schuitemaker, Ph.D. (Netherlands)
T.E. Gabriel Stewart, M.B.B.CH. (Ireland)
Thomas L. Taxman, M.D. (USA)
Jagan Nathan Vamanan, M.D. (India)
Garry Vickar, M.D. (USA)
Ken Walker, M.D. (Canada)
Anne Zauderer, D.C. (USA)
Andrew W. Saul, Ph.D. (USA), Editor-In-Chief
Associate Editor: Robert G. Smith, Ph.D. (USA)
Editor, Japanese Edition: Atsuo Yanagisawa, M.D., Ph.D. (Japan)
Editor, Chinese Edition: Richard Cheng, M.D., Ph.D. (USA)
Editor, French Edition: Vladimir Arianoff, M.D. (Belgium)
Editor, Norwegian Edition: Dag Viljen Poleszynski, Ph.D. (Norway)
Editor, Arabic Edition: Moustafa Kamel, R.Ph, P.G.C.M (Egypt)
Editor, Korean Edition: Hyoungjoo Shin, M.D. (South Korea)
Editor, Spanish Edition: Sonia Rita Rial, PhD (Argentina)
Contributing Editor: Thomas E. Levy, M.D., J.D. (USA)
Contributing Editor: Damien Downing, M.B.B.S., M.R.S.B. (United Kingdom)
Assistant Editor: Helen Saul Case, M.S. (USA)
Technology Editor: Michael S. Stewart, B.Sc.C.S. (USA)
Associate Technology Editor: Robert C. Kennedy, M.S. (USA)
Legal Consultant: Jason M. Saul, JD (USA)
Comments and media contact: drsaul@doctoryourself.com OMNS welcomes but is unable to respond to individual reader emails. Reader comments become the property of OMNS and may or may not be used for publication.
Click here to see a web copy of this news release: https://orthomolecular.acemlna.com/p_v.php?l=1&c=223&m=226&s=bad97c655476f96a390a72c05a742011This news release was sent to _t.e.s.t_@example.com. If you no longer wish to receive news releases, please reply to this message with "Unsubscribe" in the subject line or simply click on the following link: unsubscribe . To update your profile settings click here .
This article may be reprinted free of charge provided 1) that there is clear attribution to the Orthomolecular Medicine News Service, and 2) that both the OMNS free subscription link http://orthomolecular.org/subscribe.html and also the OMNS archive link http://orthomolecular.org/resources/omns/index.shtml are included.
Riordan Clinic | Orthomolecular.org
3100 N Hillside Ave
Wichita, Kansas 67219
United States